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Abstract. A full (3+1)-dimensional calculation using Lagrangian hydrodynamics is proposed for relativistic
nuclear collisions. This calculation enables us to evaluate the anisotropic flow of the hadronic matter
which appears in non-central and/or asymmetrical relativistic nuclear collisions. Applying hydrodynamical
calculations to the deformed uranium collisions in the AGS energy region, we discuss the nature of the
space-time structure and particle distributions in detail.

1 Introduction

The study of the hot and dense matter which is produced
in relativistic nuclear collisions has received intensive at-
tention, and a number of experiments have been done to
realize the phenomena [1]. The hydrodynamical model is
one of the established models for describing the global
features in relativistic nuclear collisions by collective flow.
Recently, anisotropic flow phenomena have been observed
at AGS [2,3] and also at SPS [4–6]. Several authors have
argued the relation between the behavior of the collec-
tive flow and the equation of state. Based on the rela-
tivistic hydrodynamical model, Rischke reported that the
existence of the minimum point in the excitation func-
tion of directed flow would suggest a phase transition [7].
Danielewicz has shown that the elliptic flow is sensitive to
the differences of the nuclear equation of state by using
a relativistic hadron transport model [8]. Sorge has dis-
cussed the centrality dependence of elliptic flow based on
the event generator RQMD which includes a phase tran-
sition [5,9]. Hence, the analysis of the flow can inform us
about the properties of the nuclear equation of state and
of the quark–gluon plasma (QGP).

Since Bjorken proposed the scaling solution [10], a
number of investigations based on the relativistic hydro-
dynamical model have been done. These successfully re-
produced the experimental inclusive spectra at both AGS
and SPS energy [11–17]. Ornik et al. investigated the sin-
gle particle distribution and Bose–Einstein correlation at
SPS [14]. Sollfrank et al. discussed the hadron spectra
and the electromagnetic spectra at SPS [15]. Hung and
Shuryak discussed the equation of state, radial flow, and
freeze-out at AGS and SPS [16]. Morita et al. discussed the
single particle distribution and Bose–Einstein correlation
at SPS [18]. Therefore, the relativistic hydrodynamical
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model works well in the analyses of many kinds of phe-
nomena in ultra-relativistic collisions. However, in most
of the studies based on the relativistic hydrodynamical
model, cylindrical symmetry is assumed and, therefore,
the discussions are limited only to central collisions.

Recently, anisotropic flow has been analyzed by us-
ing the relativistic hydrodynamical model. Teaney and
Shuryak proposed the “nutcracker” phenomenon [19] and
Kolb et al. discussed anisotropic flow and the phase tran-
sition [20]. But these analyses use Bjorken’s scaling solu-
tion in the longitudinal direction, and their discussion is
restricted in the mid-rapidity region.

In order to investigate anisotropic flow, the quanti-
tatively reliable (3+1)-dimensional relativistic hydrody-
namical calculation is indispensable. The full (3+1)-di-
mensional calculation of the relativistic hydrodynamical
equation has already been done by Rischke et al. [21] and
Brachmann et al. [22]. Rischke pointed out that the min-
imum of the excitation function of the directed flow sug-
gests the existence of a phase transition [21]. Brachmann
et al. [22] discussed the antiflow of nucleons at the softest
point of the equation of state using three-fluid dynamics.
Their numerical schemes are based on the Eulerian hydro-
dynamics.

Here, we present the Lagrangian hydrodynamic simu-
lation without assuming cylindrical symmetry, which
makes the full (3+1)-dimensional analyses possible. The
Lagrangian hydrodynamics has several advantages over
the Eulerian hydrodynamics to investigate phenomena in
ultra-relativistic nuclear collisions. As is well known, in
the Lagrangian method grid points move along the flow,
and is superior to the Eulerian approach when the calcu-
lation region varies rapidly. This is a great advantage for
high energy collisions where the initial nuclei are Lorentz
contracted. Secondly, we can follow a trajectory directly in
the phase diagram in the case of a Lagrangian algorithm.
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This allows us to study heavy ion collision phenomena
together with the equation of state.

As an example of the anisotropic flow in heavy ion col-
lisions, we apply our hydrodynamical model to deformed
uranium–uranium collisions at AGS energy and analyze
the elliptic flow in detail. Shuryak pointed out the remark-
able features of the deformed uranium collisions which
are suitable for the important problems such as hard pro-
cesses, elliptic flow, and J/ψ suppression [23]. The effect of
such a deformation on the flow [24] and J/Ψ suppression
[25] has been investigated. Here, we discuss the influence
of the deformation of a uranium nucleus on elliptic flow.

In Sect. 2 we introduce the relativistic hydrodynami-
cal equation and explain our original algorithm of the nu-
merical calculation of the (3+1)-dimensional relativistic
hydrodynamical equation. In Sect. 3 we apply our hydro-
dynamical model to the investigation of elliptic flow which
is produced in deformed uranium collisions and discuss the
effect of the deformation on elliptic flow in detail. Section 4
is devoted to a summary of this paper.

2 Algorithm to solve
the hydrodynamical equation

2.1 Relativistic hydrodynamical equation

The relativistic hydrodynamical equation in Lorentz co-
variant form is

∂µT
µν = 0. (1)

Since we discuss a system formed by nuclear collisions,
baryon number current conservation should also be taken
into account,

∂νj
ν
B = 0. (2)

In this paper, Tµν is taken as the energy-momentum ten-
sor of the perfect fluid,

Tµν = εuµuν − p(gµν − uµuν), (3)

and the baryon number current is given by

jν
B = nB(T, µ)uν . (4)

Here ε, p and nB are energy density, pressure and baryon
number density, respectively. These are the functions of
the coordinates through the temperature T (xµ) and the
baryon number chemical potential µ(xµ). uµ = γ(1, vx, vy,
vz) and gµν = diag.(1,−1,−1,−1) are the local four-
velocity and metric tensor, respectively. If the equation of
state is properly given, we can solve the coupled equations
(1) and (2) and obtain the chronological evolution of the
temperature and the chemical potential. In order to make
our numerical method clear, (1) and (2) are rewritten as
(see (5) on top of the page) where γ = 1/(1− v2)1/2, ω =
ε+ p. From the time-like projection of (1), uν∂µT

µν = 0,
and (2), one can obtain the entropy conservation law,

∂µsµ = 0, (6)
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with the aid of the thermodynamical relation

ε+ p = Ts+ µnB , (7)

where sµ = suµ is the entropy current density. We numer-
ically solve (2) and (6) with the algorithm which will be
explained in the next subsection.

2.2 Computational scheme

Most hydrodynamic calculations which are used for in-
vestigating the various phenomena in heavy ion collisions
are based on the Eulerian hydrodynamics. Sollfrank et al.
analyze the hadron and electromagnetic spectra by us-
ing the SHASTA algorithm [15]. The HYLANDER and
HYLANDER-C algorithm are used by Ornik et al. [14]
and Schlei and Strottman [17], respectively. Rischke et al.
use the RHHLE algorithm and study hydrodynamics and
collective flow [7].

Here, we solve the (3+1)-dimensional relativistic hy-
drodynamical equation with Lagrangian hydrodynamics.
Lagrangian hydrodynamics has several advantages over
Eulerian hydrodynamics in treating ultra-relativistic nu-
clear collisions. At high energies, the initial distribution
of the energy localizes due to collision of the Lorentz con-
tracted projectile and target. To treat the situation, a fine
resolution is required in the Eulerian hydrodynamics and
computational cost becomes great. On the other hand, in
Lagrangian hydrodynamics, discretized grids move along
the expansion of the fluid; therefore, we can perform the
calculation at all stages on the lattice points which we pre-
pare under the initial conditions. For example, in our pre-
vious calculation [26] the fluid expands four times larger
in the longitudinal direction. This fact means we need the
four-times larger number of grid points in the longitudinal
direction if we use the naive Euler type algorithm. Another
merit of the Lagrangian hydrodynamics is that it enables
us to derive the physical information directly, because it
follows the flux of the current. For example, the path of a
volume element of fluid in the T–µ plane can be traced, as
we will demonstrate in the next subsection. Therefore, we
are able to discuss how the phase between hadron phase
and QGP phase affects the physical phenomena by the
Lagrangian hydrodynamics.

Our numerical calculation of the (3+1)-dimensional
relativistic hydrodynamical equation is as follows: First,
the coordinate at time t + ∆t, xm = Xm(t, i, j, k), is
evolved as

Xm(t+∆t, i, j, k) = Xm(t, i, j, k) +
um(t, i, j, k)
ut(t, i, j, k)

∆t. (8)

By definition of the Lagrangian hydrodynamics, the coor-
dinates move in parallel with jµ and sµ.

Second, the local velocity is determined:

vm(t+∆t, i, j, k) = vm(t, i, j, k) + ∂tv
t(i, j, k, t)∆t

+
3∑

n=1

∂nv
m(i, j, k, t)(Xn(t+∆t, i, j, k)

−Xn(t, i, j, k)), (9)

where the value of ∂µvµ is obtained from (5).
Finally, the temperature and chemical potential are

derived. The volume element dσµ at time t is surrounded
by eight points, Xµ(t, i, j, k), Xµ(t, i+1, j, k), Xµ(t, i, j+
1, k), Xµ(t, i, j, k + 1), Xµ(t, i+ 1, j + 1, k), · · ·, Xµ(t, i+
1, j+1, k+1). Using this volume element, (2) and (6) are
rewritten as

s(T (t+∆t, i, j, k), µ(t+∆t, i, j, k))
×ut(t+∆t, i, j, k)dσt(t+∆t, i, j, k)
= s(T (t, i, j, k), µ(t, i, j, k))ut(t, i, j, k)
×dσt(t, i, j, k), (10)

nB(T (t+∆t, i, j, k), µ(t+∆t, i, j, k))
×ut(t+∆t, i, j, k)dσt(t+∆t, i, j, k)
= nB(T (t, i, j, k), µ(t, i, j, k))ut(t, i, j, k)
×dσt(t, i, j, k). (11)

Here, by virtue of the determination of coordinates (8),
we can use the relation,

uµdσµ = utdσt.

Since s and nB depend on T and µ, using up to first or-
der differences of the temperature, ∆T (t, i, j, k) ≡ T (t +
∆t, i, j, k) − T (t, i, j, k), and of the chemical potential,
∆µ(t, i, j, k) ≡ µ(t + ∆t, i, j, k) − µ(t, i, j, k), we expand
s and nB as

s(T (t+∆t, i, j, k), µ(t+∆t, i, j, k))
= s(T (t, i, j, k), µ(t, i, j, k))

+
[
∂s

∂T

]
T=T (t,i,j,k)
µ=µ(t,i,j,k)

∆T +
[
∂s

∂µ

]
T=T (t,i,j,k)
µ=µ(t,i,j,k)

∆µ, (12)

nB(T (t+∆t, i, j, k), µ(t+∆t, i, j, k))
= nB(T (t, i, j, k), µ(t, i, j, k))

+
[
∂nB

∂T

]
T=T (t,i,j,k)
µ=µ(t,i,j,k)

∆T +
[
∂nB

∂µ

]
T=T (t,i,j,k)
µ=µ(t,i,j,k)

∆µ. (13)

Substituting (12) and (13) into (10) and (11), we obtain
the temperature and chemical potential at the next time
step,

T (t+∆t, i, j, k) = T (t, i, j, k)

+
1

∆s,nB

{
∂nB

∂µ
s(T, µ) − ∂s

∂µ
nB(T, µ)

}∣∣∣∣ T=T (t,i,j,k)
µ=µ(t,i,j,k)

[· · ·] ,

(14)

µ(t+∆t, i, j, k) = µ(t, i, j, k)

+
1

∆s,nB

{
∂nB

∂T
nB(T, µ) − ∂s

∂T
s(T, µ)

}∣∣∣∣ T=T (t,i,j,k)
µ=µ(t,i,j,k)

[· · ·] ,

(15)
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Fig. 1. The left part of the figure indicates the flow at y ∼ 0 fm
and t = 20 fm/c in an Au + Au 10.8AGeV collision [26]. The
right part of the figure shows the same result which is obtained
by the calculation with the grids rotated 26 degrees on the x–z
plane

where ∆s,nB
and [· · ·] are

∆s,nB
=

(
∂s(T, µ)
∂T

∂nB(T, µ)
∂µ

− ∂s(T, µ)
∂µ

∂nB(T, µ)
∂T

)∣∣∣∣ T=T (t,i,j,k)
µ=µ(t,i,j,k)

,

[· · ·] =
[

ut(t, i, j, k)dσt(t, i, j, k)
ut(t+∆t, i, j, k)dσt(t+∆t, i, j, k)

− 1
]
,

respectively. These numerical procedures are the extension
of the method in [12].

In this algorithm the CPU time is almost proportional
to the number of lattice points. A numerical calculation
of the relativistic hydrodynamical equation in this paper
has been performed at the Institute for Nonlinear Sciences
and Applied Mathematics, Hiroshima University. Average
floating point operations for (55, 63, 49) space points and
5300 time steps are 36 Tera in each calculation reported
in the next section.

In order to analyze anisotropic flow with high accu-
racy, the artificial anisotropy which can be caused by the
discretization of space should be small. We checked the re-
liability of our calculation by comparing the results with a
rotated spatial grid. Figure 1 shows the results of the flow
obtained by a different choice of the grid. The difference
of flow between the two results is less than 0.15% in the
present calculations.

2.3 Path in the phase diagram

The Lagrangian hydrodynamics enables us to easily trace
the history of the trajectory of the flux. In order to test the
applicability of our algorithm in the study of the chrono-
logical trajectory of the volume element in the phase dia-
gram, we use the equation of state which contains the first
order phase transition only in this subsection. Above the
phase transition, the thermodynamical quantities are as-
sumed to be determined by QGP gas which is dominated
by massless u, d, s quarks and gluons. In the QGP phase
the pressure is given by
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where Nf is 3 and B is the Bag constant [15,16]. For
the hadron phase we use the excluded volume model [27]
which contains all resonances up to 2.0GeV [28]. In the
hadron phase the fermion pressure is given by

pexcl(T, {µi}) =
∑

i

pideal
i

(
T, µi − V0p

excl(T, {µi})
)

=
∑

i

pideal
i (T, µ̃i), (17)

where pideal is the pressure of an ideal hadron gas and
V0 is the excluded volume of which the radius is fixed
to 0.7 fm. Putting the critical temperature to 160MeV
for zero chemical potential, the Bag constant, B1/4, is
given by 233MeV. Figure 2 shows the equation of state
as a function of the temperature and the chemical poten-
tial. Figure 3 indicates the phase boundary which is de-
termined by the pressure balance between the two phases,
i.e., pQ = pH . In the mixed phase we introduce the frac-
tion of the volume of the QGP phase, λ(xµ) (0 ≤ λ ≤ 1)
and parameterize energy density and baryon number den-
sity by

εM (λ, T ∗(µ)) = λεQ(T ∗(µ))
− (1 − λ)εH(T ∗(µ)),

nBM (λ, T ∗(µ)) = λnBQ(T ∗(µ))
− (1 − λ)nBH(T ∗(µ)), (18)

where T ∗(µ) is the value of the temperature on the phase
boundary in the phase diagram. Contrary to the Eulerian
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Fig. 4. The paths in the phase diagram. The dot-dashed line
stands for the path which starts from the QGP phase and on
this line nB/s is 0.065. The solid line stands for the path which
starts from the mixed phase, and on this line nB/s is 0.059. The
dotted line stands for the path which starts from the hadron
phase, and on this line nB/s is 0.044

hydrodynamics, where the boundary condition should be
considered on the discontinuous plane between two phases
[29,30], in our algorithm, by virtue of the explicit use of
the current conservation equations, the flux of the fluid
can be traced easily even if the discontinuity of the ther-
modynamical quantities caused by the first order phase
transition exists [18,31]. For the initial conditions, we use
the results which are obtained by URASiMA (Ultra-Rel-
ativistic A–A collision Simulator based on Multiple scat-
tering Algorithm) in Au+Au 20AGeV collisions [26].

Figure 4 shows the typical paths in the phase diagram.
For instance, the trajectory of the volume element of the
grid number (x, y, z) = (0,−1, 0), which starts from the
QGP region, moves along the phase boundary before en-
tering the hadron phase. The volume element of (0,−5, 0),
which starts from the mixed phase, also moves along the
phase boundary before turning into the hadron phase. On
the other hand the volume element of the grid number
(x, y, z) = (0,−7, 0), which starts from the hadron phase,
draws a smooth trajectory to the freeze-out. This behav-
ior is the same result as discussed in [16]. By virtue of the
Lagrangian hydrodynamics we can easily trace the trajec-
tory which corresponds to the adiabatic paths in the T–µ
plane.

3 Effect of deformed uranium
on collective flow

As an application of our hydrodynamical model, we in-
vestigate the flow which is generated in the deformed ura-
nium collisions. Shuryak has pointed out that remarkable
problems such as hard processes, elliptic flow, and the
mechanism of J/ψ suppression can be resolved by using
the deformed uranium collisions [23]. Since Danielewicz
showed that elliptic flow is sensitive to the nuclear equa-
tion of state at AGS energy [8], the elliptic flow is one
of the hottest topics in high energy nuclear physics. The
high accuracy experiments for elliptic flow have been done
at AGS [2,3] and SPS [4–6]. Recently, using the cascade
model of the ART, Li discussed the elliptic flow in de-
formed uranium collisions [24]. If the deformation has a

large influence on the anisotropic flow, the analyses of col-
lective flow using U+U collisions are promising for inves-
tigating the difference between QGP states and hadron
states. In order to analyze anisotropic flow of deformed
uranium collisions, the (3+1)-dimensional relativistic hy-
drodynamical model plays a central role, i.e. it provides
us with reliable quantitative results.

Here, the ellipticity is measured by the asymmetry
of the azimuthal particle distribution which is expanded
based on the Fourier series:

dN
dφ

∼ v0(1 + 2v1 cos(φ) + 2v2 cos(2φ)), (19)

where φ is the azimuth and v0 is the normalization. The
parameters v1 and v2 correspond to the intensity of the
directed flow and elliptic flow, respectively.

The shape of the deformed uranium nucleus is approx-
imately ellipsoid, and the short (Rt) and long (Rc) semi-
axis are given by

Rt = Rs

(
1 − 1

3
δ

)
,

Rc = Rs

(
1 +

2
3
δ

)
, (20)

where δ = 0.27 is the deformation parameter [32]. We
will investigate how the deformation and the orientation
between two colliding deformed uranium nuclei influence
the flow of the hadrons produced. Among the many types
of collisions, as to the orientation we focus on two types,
i.e., tip–tip collisions in which the long axes of two nuclei
are along the beam direction, and body–body collisions
in which the long axes of two nuclei are parallel to each
other but perpendicular to the beam direction. We also
calculate sphere–sphere collisions for comparison.

3.1 Model description

In outline our calculation procedure is as follows: First,
we parameterize the initial conditions of energy density,
baryon number density and local velocity based on the
result of event generator URASiMA.

Our event generator URASiMA [33–35] is character-
ized by the multi-chain model (MCM) by which the multi-
particle production process can be successfully described.
In URASiMA the detailed balance between quasi-two-
body production and absorption processes holds. It is ap-
plicable to the AGS and SPS energy regions and the cal-
culated results reproduce the experimental data of the
hadron spectra [33]. Recently, the thermodynamical prop-
erties of hot and dense hadronic gas were also investigated
by URASiMA [34,35]. For a more detailed discussion, see
[33–35].

In order to solve the relativistic hydrodynamical equa-
tion, we need to introduce an equation of state. Since our
calculation does not rely on any artificial assumption, we
can investigate how the difference of the equations of state
has an effect on the physical phenomena. For the first trial,
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Fig. 5. The freeze-out condition. The solid line stands for
the freeze-out condition which is determined from the thermal
freeze-out (the dotted line) and the chemical freeze-out (the
dashed line)

we adopt the equation of state of the ideal hadron gas in-
cluding resonances; this is the same equation of state as
we used for the initial conditions. The temperature and
chemical potential of the volume elements vary with the
space-time evolution of the fluid until the hadronization
process occurs.

Finally, hadron spectra are obtained by the Cooper–
Frye formula [36]. We assume that the hadronization pro-
cess occurs when the temperature and chemical potential
of the volume elements cross the boundary (the solid line
in Fig. 5). The solid line is obtained so that the freeze-
out temperature becomes 140MeV at vanishing chemical
potential, based on the chemical freeze-out model and the
thermal freeze-out model [37]. Using the Cooper–Frye for-
mula the particle distribution is given by

E
dN
d3P

=
∑

h

gh

(2π)3

∫
σ

dσµP
µ

× 1
exp[(Pνuν − µf)/Tf ] ± 1

, (21)

where gh is the degeneracy of the hadrons and Tf and
µf are the freeze-out temperature and chemical potential
shown in Fig. 5, respectively, and uµ is the local velocity
of the fluid on the hypersurface dσµ.

We determine the hypersurface dσµ by evaluating the
normal vector to the freeze-out hypersurface [38]. We eval-
uate the intensity of the elliptic flow v2 using (19) and
(21).

3.2 Initial conditions

In high energy collisions such as SPS and RHIC, the con-
tribution of the spectator to the initial conditions is small
and “in-plane” elliptic flow is enhanced [39]. However, if
we focus on the AGS energy regions in which the incident
energy is not so large, the effect of the deformation can
remain strong. In order to prepare the appropriate ini-
tial conditions, we estimate the energy density distribu-
tion and baryon number density distribution by the event
generator URASiMA. We calculate the space-time evolu-
tion in U+U 10AGeV and 20AGeV tip–tip, body–body
and sphere–sphere collisions at b = 0 and 6 fm, using the

event generator URASiMA, where b is the impact param-
eter. In the case of tip–tip and body–body collisions, we
consider the collision of the deformed uranium according
to (20). We assume that the hydrodynamical expansion
starts when the projectile nucleus finishes passing through
the target nucleus. At this time the initial conditions of the
hydrodynamical model, T (xµ), µ(xµ), and uµ(xµ), should
be given.

The results of URASiMA are listed in Tables 1a (U+U
10AGeV) and 1b (U+U 20AGeV). In a body–body col-
lision the energy density and baryon number density are
the smallest among the different types of collision for the
same incident energy and impact parameter. For tip–tip
collisions the decrease in the energy density and baryon
density with impact parameter is the largest among the
three types of collision. Next the initial energy density
distribution and baryon number density distribution are
parametrized based on these data in Tables 1a and 1b. The
initial energy density and baryon number density distri-
butions are given by

ε = εmaxB(x, y, z),
nB = nBmaxB(x, y, z), (22)

where B(x, y, z) is the distribution function, which is de-
termined so that the result of URASiMA is reproduced,
and εmax and nBmax are the values of the result of
URASiMA in the central region. We interpolate and/or
extrapolate the values of εmax and nBmax from the data
of Tables 1a and 1b as follows. The distribution function
is given by

B(x, y, z) =
1
c1

[
a1 exp

(
− (x− xcs)2

σ2
sx

− (y − ycs)2

σ2
sy

− (z − zcs)2

σ2
sz

)

+a1 exp
(

− (x+ xcs)2

σ2
sx

− (y + ycs)2

σ2
sy

− (z + zcs)2

σ2
sz

)

+exp
(

− (x− xcp)2

σ2
px

− (y − ycp)2

σ2
py

− (z − zcp)2

σ2
pz

)]
,

(23)

where c1 is the normalization, and the parameter which
corresponds to the ratio of the energy density of the spec-
tator to that of the participant, a1, is fixed to be 0.7 for
all cases. The ratio of the baryon number density is also
fixed by a1. In (23) xcp, ycp, and zcp are the center of par-
ticipant, and xcs, ycs and zcs are the center of spectator.
Their specific values are determined geometrically by the
position of the projectile nucleus and target nucleus. For
the participant,

xcp = ycp = zcp = 0,

σpx = a3

(
Rx − b

2

)
,

σpy =
Ry

Rx

√
R2

x − b2

4
,

σpz = a4
zcs
γ
. (24)
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Table 1. The energy and baryon number densities obtained by URASiMA at (x, y, z) =
(0, 0, 0) for different types of collisions and the impact parameters. a U+U 10AGeV, b U+U
20AGeV

Table 1a: The result of URASiMA (U+U 10.0AGeV)

b [fm] Type of collision Initial time [fm/c]
ε [GeV/fm3]
at (0, 0, 0)

nB [fm−3]
at (0, 0, 0)

0 tip–tip 8.5 1.975 0.977
6 tip–tip 8.5 1.403 0.718
0 sphere–sphere 7.0 1.807 0.929
6 sphere–sphere 7.0 1.611 0.809
0 body–body 6.5 1.681 0.819
6 body–body 6.5 1.490 0.728

Table 1b: The result of URASiMA (U+U 20.0AGeV)

b [fm] Type of collision Initial time [fm/c]
ε [GeV/fm3]
at (0, 0, 0)

nB [fm−3]
at (0, 0, 0)

0 tip–tip 6.0 2.871 1.124
6 tip–tip 6.0 2.060 0.825
0 sphere–sphere 5.0 2.744 1.064
6 sphere–sphere 5.0 2.241 0.869
0 body–body 4.5 2.248 0.933
6 body–body 4.5 2.253 0.860

For the spectator,

xcs =
Rx

2
+
b

4
,

ycs = 0,

zcs = ti − Rz

γ
,

σsx = a5
b

2
,

σsy =



Rx (b ≥ Rx),
Ry

Rx

√
2Rxb− b2 (b ≤ Rx),

σsz = a6
Rz

Ryγ
. (25)

Rx, Ry, and Rz are the radius of the projectile nucleus
and the target nucleus in the x, y, and z directions. In a
body–body collision, the x direction and y direction de-
note the longer axis and the shorter axis, respectively. In
(25) ti is the initial time when the hydrodynamical evolu-
tion starts. In (24) and (25), the parameters a3 ∼ a6 are
tuned so that the energy density and baryon number den-
sity distribution, (22), reproduce the result of URASiMA.
The parameters a3 ∼ a6 are fixed at 0.7, 2.5, 1.3, 0.7,
respectively.

Figure 6 shows the energy density distribution of the
initial conditions for U+U 20AGeV sphere–sphere colli-
sions at b = 4.0 fm. From this figure we can see clearly the
contribution from the participant and the spectator. For
the initial velocity distribution we neglect the transverse
flow because its value is small in the result of URASiMA.
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Fig. 6. The initial condition of the energy density distribution
at y = 0 fm in a U+U 20AGeV, sphere–sphere collision. In this
case the impact parameter is 4.0 fm

The initial flow distribution is given by

vx(x, y, z) = 0,
vy(x, y, z) = 0,

vz(x, y, z) =
z

t
Bv(x, y, z). (26)

Here the distribution function Bv(x, y, z) is given by

Bv(x, y, z) =
1
c2

[
exp

(
− (x− xcs)2

σ2
sx

− (y − ycs)2

σ2
sy

− (z − zcs)2

σ2
sz

)

+exp
(

− (x+ xcs)2

σ2
sx

− (y + ycs)2

σ2
sy

− (z + zcs)2

σ2
sz

)

+a2 exp
(

− (x− xcp)2

σ2
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− (y − ycp)2

σ2
py
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Fig. 7. The initial condition of the velocity distribution at
y = 0 fm under the same conditions as Fig. 6
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Fig. 8. The time evolution of the energy density of the cen-
tral region in U+U 20AGeV with b = 0 fm. The solid line,
the dot-dashed line, and the dashed line stand for tip–tip col-
lisions, body–body collisions, and sphere–sphere collisions, re-
spectively
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Fig. 9. The time evolution of the baryon number density distri-
bution in the same case as Fig. 8. The solid line, the dot-dashed
line, and the dashed line stand for tip–tip collisions, body–body
collisions, and sphere–sphere collisions, respectively

− (z − zcp)2

σ2
pz

)]
, (27)

where c2 is the normalization and a2 is the parameter,
fixed at 1.4. Figure 7 shows the initial velocity distribution
in the same case as Fig. 6. The flow in the longitudinal
direction is similar to Bjorken’s scaling solution in the
central region.

3.3 Calculated results

Figures 8 and 9 indicate the expansion of the energy den-
sity and baryon number density in the central region.

v 2
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e10-t

e20-b

e20-t

e20-s

b [fm]

-0.02

-0.01

0

0.01
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Fig. 10. The behavior of v2 as a function of the impact param-
eter in all cases. In this figure e10-b means that the incident
energy is 10AGeV in body–body collisions, e10-s means that
the incident energy is 10AGeV in sphere–sphere collisions and
e20-t means that the incident energy is 20AGeV in tip–tip
collisions, and so on

There is a slight difference in the life time in each case. The
initial energy density and baryon number density of body–
body collisions are the smallest among all three types of
collisions and the difference between tip–tip and sphere–
sphere collisions is small. At the initial time the difference
of the energy density among all three types of collisions is
∆ε � 10 ∼ 20% and the time difference is ∆t � 10 ∼ 20%
at ε = 1GeV/fm3. However, these kinds of differences
among the collision types do not appear at the final time.

Figure 10 shows the behavior of v2 of the nucleon as
a function of the impact parameter for each type of colli-
sion at 10 and 20AGeV. The elliptic flow parameter, v2,
increases with impact parameter and reaches a peak at
b = 3 ∼ 4 fm and decreases in every case. Furthermore,
for body–body collisions v2 does not vanish at b = 0. Con-
sequently, the effect of the deformation is not negligible. In
order to make this characteristic behavior clear we focus
on the pressure distribution.

Figure 11 displays the pressure distribution in U+U
10AGeV sphere–sphere collisions. From the figures at z ∼
0 fm we can see that the pressure gradient in the y direc-
tion increases with the impact parameter. Therefore one
might consider that v2 increases with impact parameter,
because the velocity of the produced particles in the x
direction is larger than the one in the y direction. But
Fig. 10 shows that the value of v2 starts to decrease at
about b = 3 ∼ 4 fm. Here we focus on the pressure dis-
tribution in the z plane in Fig. 11, and we can see that
the effect of the spectator increases with the impact pa-
rameter. Because the spectators block the flow in the x
direction, the growth of the flow in the x direction is sup-
pressed. Consequently the behavior of v2 is determined by
both the pressure gradient and the effect of the spectator.

Figure 12 shows the pressure distribution at a U+U
20AGeV collision at b = 4.0 fm. In the z plane there is
a slight difference between tip–tip collisions and sphere–
sphere collisions. On the other hand, in body–body colli-
sions the extension of the pressure distribution in the x



C. Nonaka et al.: (3+1)-dimensional relativistic hydrodynamical expansion of hot and dense matter 671

Fig. 11. The impact parameter dependence of the pressure
distribution in U+U 10AGeV sphere–sphere collisions at t =
20 fm/c. The left part of the figures displays the results at
z ∼ 0 fm and the right part of the figures displays those at y ∼
0 fm. The highest values of the pressure distribution contours
are 0.055GeV/fm3 for b = 0 fm, 0.05GeV/fm3 for b = 3 and
8 fm, respectively and the contour lines are drawn in steps of
∆p = 0.005GeV/fm3

direction is larger than in the other cases. Therefore, v2
in body–body collisions is less than one in sphere–sphere
and tip–tip collisions at any impact parameter.

Figure 13 shows the pressure distributions at U+U
10AGeV and U+U 20AGeV sphere–sphere collisions at
b = 8.0 fm. Since there is a slight difference between U+U
10AGeV and U+U 20AGeV in the z plane, the growth of
v2 in U+U 10AGeV collisions is similar to U+U 20AGeV.
In the y plane the effect of the spectator in the U+U
20AGeV case is smaller than U+U 10AGeV. Because the
effect of a Lorentz contraction becomes large for a large
incident energy, the spectator becomes thin and the influ-
ence of it becomes small. Consequently, the position of the
peak of v2 (Fig. 10) moves to the large incident energy.

Here, the value of v2, which is influenced by the de-
formation, is about 0.015 from Fig. 10. According to the
analyses of the excitation function of the directed flow in

Fig. 12. The pressure distribution in tip–tip, sphere–sphere
and body–body collisions of U+U 20AGeV at t = 20 fm/c. The
impact parameter is 4 fm in all figures. The highest value of the
pressure distribution contours is 0.08GeV/fm3 for all figures
and the contour lines are drawn in steps of ∆p = 0.01GeV/fm3

[21,22], the flow becomes slow under the phase transition,
because the speed of sound becomes small in the mixed
phase, but the effect of the phase transition on the flow is
expected to be small in the AGS energy region. Therefore,
the effect of the deformation is significant and the value
of v2 which is obtained in this section is important. Fur-
ther detailed analysis on the relation between the effect of
the phase transition and the deformation on the flow may
provide a new possible experimental probe of the phase
transition.

4 Summary

We present (3+1)-dimensional relativistic hydrodynami-
cal model of the Lagrangian hydrodynamics without as-
suming symmetrical conditions. Our algorithm is explic-
itly based on the entropy conservation law and the baryon
number conservation law. In our algorithm we trace the
volume elements of the fluid along the stream of flux. By
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Fig. 13. The incident energy dependence of the pressure distri-
bution in U+U 10.0AGeV and U+U 20.0AGeV sphere–sphere
collisions at t = 20 fm/c. The impact parameter is 8 fm in
all figures. The highest value of the pressure distribution is
0.05GeV/fm3 for 10.0AGeV collisions and 0.07GeV/fm3 for
20.0AGeV collisions. The contour lines are drawn in steps of
∆p = 0.005GeV/fm3 for 10.0AGeV collisions and in steps of
∆p = 0.01GeV/fm3 for 20.0AGeV collisions

using our relativistic hydrodynamical model based on La-
grangian hydrodynamics, the path of each volume element
in the phase diagram can be traced quite easily. There-
fore we can investigate directly how the phase transition
takes place and affects the physical phenomena in an ultra-
relativistic nuclear collision.

Using this model, we have investigated the effect of an
anisotropic flow in deformed uranium collisions. The be-
havior of the flow depends on the pressure distribution and
shadowing. Especially the shadowing effect increases with
the impact parameter. As for differences in collision types,
there exists only a slight difference between tip–tip colli-
sions and sphere–sphere collisions. On the other hand, v2
for body–body collisions is different from sphere–sphere
collisions, i.e., the absolute value of v2 is maximum at
b = 0 fm. In light of the effect of the incident energy on
v2, the peak of v2 is shifted to the large impact param-
eter region, because the shadowing effect decreases with
increasing incident energy. We accordingly conclude that
body–body collisions are promising for studying the nu-
clear equation of state and the properties of the QCD
phase transition. These results are consistent with [24].

We remark the following things. In an actual exper-
iment, a U+U collision is the superposition of different
types of collisions like tip–tip, body–body, and so on. Since
the contribution of body–body collisions is not negligible,
v2 does not equal zero at b = 0 fm. Furthermore, shadow-
ing has a large effect on v2.

In this paper we have applied our relativistic hydro-
dynamical model to the anisotropic flow. Many kinds of
applications of our relativistic hydrodynamical model can
be considered. Using our hydrodynamical model, we can
analyze directly the phenomena which are sensitive to
the phase transition. For example, we can argue how the
phase transition has effects on the minimum of the exci-
tation function of the directed flow, discussing the trajec-
tory of a volume element of the fluid in the T–µ plane.
Whether “nutcracker” phenomena can be observed in our
Lagrangian hydrodynamical model is also an interesting
problem. The Hanbury–Brown-Twiss effect (HBT) and
the influence of anisotropic flow on HBT may also be in-
vestigated.
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